
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713926090

A molecular theory including hard rod interactions of liquid crystalline
phases exhibited by highly polar compounds
A. S. Govinda; N. V. Madhusudanab

a Department of Physics, Vijaya College, Basavanagudi, Bangalore 560 004, India, b Raman Research
Institute, C.V. Raman Avenue, Bangalore 560 080, India,

Online publication date: 06 August 2010

To cite this Article Govind, A. S. and Madhusudana, N. V.(2000) 'A molecular theory including hard rod interactions of
liquid crystalline phases exhibited by highly polar compounds', Liquid Crystals, 27: 9, 1249 — 1258
To link to this Article: DOI: 10.1080/02678290050122114
URL: http://dx.doi.org/10.1080/02678290050122114

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713926090
http://dx.doi.org/10.1080/02678290050122114
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Liquid Crystals, 2000, Vol. 27, No. 9, 1249± 1258

A molecular theory including hard rod interactions of liquid
crystalline phases exhibited by highly polar compounds
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(Received 15 September 1999; in � nal form 3 April 2000; accepted 7 April 2000 )

We extend our molecular mean � eld model of highly polar compounds to include hard
rod interactions to develop a hybrid model. The latter interactions are restricted to second
virial terms, following a method developed by Koda and Kimura. This allows us to calcu-
late pressure–temperature phase diagrams. Depending on the model parameters used, the
phase diagrams exhibit the following features: nematic–nematic phase transition, bounded
SmAd region, double reentrance, reentrant nematic lake surrounded by the smectic A phase
(the reentrant nematic lake merging with the main nematic sea) as well as the possibility
of quadruple reentrance. We compare the calculated phase diagrams with the available
experimental data.

1. Introduction are used to describe such media. The two order para-
In this paper, we consider liquid crystals composed of meters correspond to two incommensurate lengths,

rod-like molecules. The nematic (N) liquid crystal has namely the molecular length l and the length l¾ of a
a long range orientation order of the long axes of suitably associated antiparallel pair of molecules such
molecules and no long range translational order. The that l < l¾ < 2l.
smectic A (SmA) liquid crystal has an additional quasi There have also been several attempts to develop
long range one-dimensional translational order parallel molecular theories of the phase transitions in highly
to the long axes of molecules, i.e. a layering order with a polar compounds [5–14]. A particularly simple model
spacing d. The smectic phase is favoured if the molecules was proposed by us to explain double reentrance [12]

have relatively long aliphatic chains. Usually the layer and other unusual phase transitions [13–15]. In this
spacing is of the order of molecular length l. The usual model [12] the molecular origin of the two lengths is
sequence of phase transitions on cooling from the iso- explained as follows: the interaction between permanent
tropic liquid (I) phase is I � N � SmA � Cr (crystal ). dipoles favours an antiparallel orientation (A) between
However, if the molecules have a strong longitudinal neighbouring molecules [16]. The interaction energy
electric dipole moment due to cyano or nitro end groups, is 3 1/r3 where r is the intermolecular separation. The
diŒerent molecular associations are possible, resulting aromatic part of the antiparallel neighbours overlap
in smectic phases with d Þ l. The SmA phase is termed due to strong anisotropic dispersion interaction between
as SmA1 phase if d# l, whereas it is a SmAd phase them and a tendency for the aromatic and aliphatic
if l < d < 2l. Liquid crystals composed of highly polar parts to segregate. This results in the well known partial
molecules are known to exhibit a variety of unusual bilayer structure, � gure 1 (a).
phase sequences such as double re-entrance, smectic A

1
– On the other hand, if the polar molecules are parallel,

smectic Ad transition [1], etc. Studies on reentrant liquid the dipole interaction is repulsive. However, in view of
crystal have been recently reviewed by Cladis [2]. the strong polarizability of the conjugated aromatic core

These phenomena have been successfully explained to which the dipole is attached, the latter induces an
on the basis of a Landau theory by Prost and coworkers oppositely oriented dipole moment in the neighbouring
[3, 4]. In this model, two competing order parameters molecule, thus reducing the net dipole moment of each

molecule, � gure 1 (b). Further, in this ‘parallel’ (or P)
con� guration, the chains are in close proximity, adding*Author for correspondence; e-mail: nvmadhu@rri.ernet.in
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1250 A. S. Govind and N. V. Madhusudana

SmAd phase is seen to be more stable for mixtures with
higher concentrations of the higher homologue. To
explain such phase diagrams theoretically, an explicit
calculation of pressure is desirable. For this purpose,
packing eŒects which take into account the hard rod
features of molecules have to be considered. Even though
many experimental investigations have been carried
out on the p ± T phase diagrams, there is no detailed
molecular theory of such phenomena. A thermodynamic
theory has been developed by Clark [20]. Indekeu and
Berker have developed a spin gas model [6], in which
the pressure is simply assumed to be proportional to the
inverse of molecular separation. Recently Sear and
Jackson [21], have developed a hard rod model of a
binary mixture consisting of interconverting monomers
and dimers following the method of Koda and Kimura
[22]. In this model, the temperature is introduced

Figure 1. Schematic diagram showing the mutual con� guration through the equilibrium constant in the monomer–dimer
in antiparallel (a) and parallel (b) pairs of molecules. The potential and the calculation is restricted to the packing
solid arrow represents the permanent dipole; and dotted

fraction–temperature phase diagrams. In the present
arrow represents the induced dipole.

paper, we extend our mean � eld model of highly polar
compounds [13] to include the hard rod features and
develop a hybrid model. This allows us to calculateto the attractive interaction. Both these interaction

energies are 3 1/r6. Hence, one can expect a change in diŒerent phase diagrams as functions of pressure.
Several hard rod models of liquid crystals have beenthe con� guration of the pairs from ‘A’ type to ‘P’ type

as the intermolecular separation is decreased below some developed over the past decades. Onsager [23] was the
� rst to show that packing eŒects alone can stabilizevalue as the density is increased due to the lowering of

temperature or increase of pressure. This implies the the nematic phase in the case of long rod-like molecules
with aspect ratios ~100. However, extension of the hardexistence of a polar short range order at low temper-

atures. Indeed such a polar short range order has been rod models to smectic liquid crystals is not straight-
forward. In fact from computer simulations [24], it isexperimentally detected by us recently [17], thus sup-

porting the basic idea of our model. Using extensions of known that a system of hard ellipsoids does not form a
smectic phase due to packing eŒects alone. On the otherthis model, we have explained the nematic–nematic and

SmA1–SmAd transitions, the occurrence of the reentrant hand, computer simulation studies [24], experiments
[25] and a few speci� c theoretical models [26–29],nematic lake, the eŒect of an external electric � eld on

the phase diagram, etc. [13–15]. show that a system of hard spherocylinders can form the
nematic and smectic A phases. As explained by WenThe diŒerence in the con� gurational energy (De)

between antiparallel and parallel pairs is a sensitive and Meyer [28], the SmA phase in this case is stabilized
because the loss of entropy in the formation of layeringfunction of the intermolecular separation and hence

the density. However, as the temperature is lowered order is more than compensated by the gain in entropy
due to the increased freedom of molecules within theacross the temperatures corresponding to the stability

of reentrant phases, the density increases monotonically layers.
In our model of polar compounds, the medium is[18]. Hence for the sake of simplicity, in our earlier

discussions [12–15] we assumed De to be a function of assumed to be a mixture of antiparallel and parallel
pairs [12–15]. Thus we have to consider hard rodtemperature.

Several experimental investigations have also been models of binary mixtures [30, 22] to extend our model.
The relative concentration of antiparallel and parallelcarried out on the phase diagrams of such liquid crystals

as functions of pressure. In particular, the SmAd phase pairs is not a constant, but varies with both temperature
and pressure making the calculations quite tedious.becomes bounded in the p ± T plane and the SmA

1
–

reentrant nematic transition temperature increases mono- Hence, in the present paper we adopt the relatively
simple theory of hard rod mixtures developed by Kodatonically with pressure [18, 19]. High pressure studies

on the reentrant phases exhibited by the binary mixtures and Kimura for molecules with perfect orientational
order and extend it to develop a hybrid model forof hexyloxycyanobipheny l (6OCB) and its higher homo-

logue (8OCB) were reported long ago [18] and the the nematic–smectic transitions in liquid crystals with
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1251Hybrid model for polar compounds

molecules having strong dipole moments. We express De where N1 and N2 are the number of P and A types of
pairs respectively, V is the system volume, v 5 pD21 l1/4 5as a function of density, i.e. packing fraction, and calcu-

late pressure explicitly. We calculate the phase diagrams pD22
l
2
/4 and N 5 N

1 1 N
2

is the total number of pairs.
The volume fractions which are the same as the relativeas functions of pressure. Depending on the parameters

used, the calculations yield one or more of the following fractions of P and A types of pairs respectively are
features: nematic–nematic phase transition, bounded
SmAd region, double reentrance, reentrant nematic lake x

1 5
N

1
N

, x
2 5

N
2

N
(4)

surrounded by the smectic A (the reentrant nematic
lake merging with the main nematic sea) and also the

such that x1 1 x2 5 1.possibility of quadrupole reentrance. These are com-
Third, most of the phenomena like reentrance occurpared with available experimental data. The inclusion

well below the nematic–isotropic transition temperature.of hard rod features leads to the following new results:
Hence for simplicity, especially in the calculation of(a) explicit calculation of pressure, (b) eŒect of chain
excluded volume eŒects, the cylinders are assumed tolength on the p ± T phase diagram, and (c) realization of
have perfect orientational order and aligned along theN

1
–N

d
and SmA

1
–SmA

d
transitions even in the absence

Z-axis.of deviation from the geometric mean rule in the
attractive interactions. The model provides a molecular
basis for the two lengths introduced by Prost in the 2.2. Free energy
phenomenological Landau theory [1, 4]. 2.2.1. Hard rod component

In § 2, the theoretical model is developed. In § 3, The hard rod part of the Helmholtz free energy Fh is
various calculated phase diagrams as functions of calculated in the second virial approximation following
pressure are presented and discussed in comparison with Koda and Kimura [22]. Let Pn (r) be the packing fraction
experimental data. Some concluding remarks are given of cylinders of length ln at the position r 5 (x, y, z).
in § 4. Obviously Ÿ

V
dr Pn (r) 5 Nnv, the fractional volume

occupied by the species of the type n ( 5 1 or 2).
Fh can be expressed as a functional of Pn (r) in the2. Theoretical model

form2.1. Assumptions
First, we assume the medium to be a binary mixture

of parallel (P) and antiparallel (A) types of dimers. Fh
k
B
T

5 �
n

NnLn (T ) 1 �
n

1
v P

V

dr Pn (r) ln Pn (r)
For the sake of notational convenience, we indicate
the former by the su� x ‘1’ and the latter by ‘2’.
The con� gurational energy diŒerence is given by Õ

1

2 �
n
�
n ¾

1

v2 P
V

dr1 dr2 Pn (r1 )Pn ¾ (r2 )bnn ¾ (r1 , r2 )

1 {higher order terms in Pn (r)} (5)De 5 e2
Õ e1 5 AkBT *A g

g*
Õ 1B (1 )

where T is the temperature, Ln (T ) which is a function
where A is a dimensionless interaction parameter, k

B
the of only T is the contribution from kinetic energy, and

Boltzmann constant, T * some reference temperature, the Meyer function bnn ¾ (ri
, r

j
) for parallel cylinders is

g the packing fraction and g* is the packing fraction given by
at which e2 5 e1 . For g > g*, De is positive which
means that e1 is more negative than e2 and the P type

bnn ¾ (ri
, r

j
) 5 Õ HCA ln 1 ln ¾

2 B2
Õ (z

i
Õ z

j
)2Dcon� guration is favoured over the A type con� guration.

Second, both A and P types of dimers are assumed to
be right circular cylinders of the same volume v, but of

Ö HCADn 1 Dn ¾
2 B2

Õ (x
i
Õ x

j
)2 Õ (y

i
Õ y

j
)2DdiŒerent lengths l2 and l1 respectively ( l2 > l1 ) and the

corresponding diameters are denoted by D2 and D1 . We
(6)de� ne

where H (a) 5 0 for a < 0 and H(a) 5 1 for a > 0 and the
q 5

l2
l1

5
D21
D22

. (2 ) Z-axis is taken along the nematic director.
The packing fraction of each kind of cylinder is

uniform in the nematic phase and is given byThe packing fraction is given by

g 5
N

1
v 1 N

2
v

V
5

Nv
V

(3) Pn (r) 5
Nnv
V

(7)
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1252 A. S. Govind and N. V. Madhusudana

while that in the SmA phase is a periodic function of z, have
i.e. [22]

FN
NkBT

5 fN 5 x1CL1 (T ) 1 ln
N1v
V D

Pn (r) 5
Nnv
V

rn (z). (8 )

1 x
2CL

2
(T ) 1 ln

N2v
V D

We de� ne f 5 z/l
1
, i.e. take l

1
as unit of length.

Substituting equations (6) and (8) into equation (5) and
1 g[4 1 x

1
x

2
b(q)] 1 x

2
De

kBT
(13)neglecting higher order terms, we can write the free

energy per pair
where

f h 5
Fh

NkBT
(9 ) b(q) 5 A1 1

1

Ó q
1 Ó qB2

Õ 9. (13 a)

as a functional of rn (f) as: The smectic perturbation energy is,

f h[r
1
(f), r

2
(f)] dFhS

NkBT
5 d f hS

5 x1CL1 (T ) 1 ln
N1v
V D 1 x2CL2 (T ) 1 ln

N2v
V D 5 x1

a21
4

1 x2
a22
4

1 2x21ga21
sin k

k
1 2x22ga22

sin qk
qk

1
x1
L P

L

df r1 (f) ln r1 (f) 1
x2
L P

L

df r2 (f) ln r2 (f)
1 x1x2gA1 1

1

Ó qB2 a1a2
k

sinCk(1 1 q)
2 D . (14)

1 2x21g
1
L P

L

df df ¾ r1 (f)r1 (f ¾ )H[1 Õ (f Õ f ¾ )2] Since the rods are assumed to be perfectly aligned,
the SmA–N transition is second order in nature. Hence,
at the transition point, xn is the same in the SmA and

1 2x22
g

1
qL P

L

df df ¾ r
2
(f)r

2
(f ¾ )H [q2 Õ (f Õ f ¾ )2]

N phases.

2.2.2. Attractive component in the smectic phase1 x
1
x

2
gA1 1

1

Ó qB2 1
L P

L

df df ¾ r
1
(f)r

2
(f ¾ )

The energy of ith pair in the smectic medium is given
by

Ö HCA1 1
q
2B2

Õ (f Õ f ¾ )2D (10)

u
in

5 Õ uog �
n ¾

ann ¾ xn ¾ an ¾ cosA2pf
in

d B (15)

where L is the system size along the Z-axis in units of l1 .
where uo is an interaction parameter which is taken toThe sinusoidal perturbation of rn (f) in smectic A can
be equal to 4.541 kBT *, and T * 5 500 K would corre-be written as
spond to the N–I transition temperature if the nematic
order parameter were not assumed to be saturated. ann ¾rn (f) 5 1 1 an cos kf (11)
are the McMillan parameters de� ned as

where k 5 2p/d is the (dimensionless) wavenumber of the ann 5 2 exp[ Õ (pro/dnn )2] (16)
perturbations with d as the average layer spacing in units

andof l1 , and an represent amplitudes equivalent to order
parameters in smectic A. Substituting equation (11) into ann ¾ 5 (annan ¾ n ¾ )1/2 (17)
equation (10) and neglecting higher powers in a1 and

where d11 5 ro 1 c and d22 5 ro 1 2c, with ro and c beinga2 , we can write,
the lengths of aromatic and chain moieties respectively
(see � gure 1). a22 is obviously related to a11 .

f h 5
Fh

Nk
B
T

5 fN 1 d f hS . (12) The total internal energy of N pairs is,

U 5
N
2 �

n

7 u
in 8 xn 5 Õ

N
2

uog �
n
�
n ¾

ann ¾ xn xn ¾ anan ¾As the medium is assumed to have perfect orientation
order, the nematic free energy per pair arises from the
hard rod interactions and the pairing energy (De). We (18)
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1253Hybrid model for polar compounds

where 7 8 indicates statistical average and we have used Expanding ln Zn and neglecting higher powers in a1 and
a2 , we get

an 5 TcosA2pf
in

d BU 5 P 1

0
djn wn cos (pjn ) (19)

d fS 5 (a1 a2 )AS
11

S
12

S21 S22
BAa

1
a2
B (28)

with jn 5 2fn /d as the reduced coordinate and wn is the
normalized distribution function for the n-type of pairs. where

The entropy of N pairs is,

S
11 5

x
1

4
(2C

1
Õ C21

Õ x
1
x
2
CÄ 2 )

S 5 Õ Nk
B �

n

xn P 1

0
djn wn ln wn (20)

S
22 5

x2
4

(2C
2

Õ C22
Õ x

1
x
2
CÄ 2 )and therefore the attractive part of the smectic free energy

in the mean � eld approximation for the medium with
perfect orientational order is given by, DFaS 5 U Õ T S, S12 5 S21 5

1
2

x1x2CÄ A1 Õ
C1 1 C2

2 B . (29)

i.e. d f aS 5
DFaS

Nk
B
T

5 Õ
u
o
g

2k
B
T �

n
�
n ¾

ann ¾ xn xn ¾ anan ¾ d f
S 5 0 determines the N–SmA transition point. This

condition is equivalent to

1 �
n

xn P 1

0
djn wn ln wn . (21) det (S ) 5 S

11
S

22
Õ S

12
S

21 5 0. (30)

Using equations (29) at the transition point, we get

2.2.3. Free energy due to smectic ordering x1x2CÄ 2 Õ C1C2 5 D 5 0. (31)
The free energy due to smectic ordering is given by

2.3. Expressions for k and x
2

d fS 5 d f hS 1 d f aS 5 Õ x1x2a1a2CÄ
k can be found by minimizing d fS given by

equation (28). The value kc at the transition is given by1 �
n
A Õ

xn a2n Cn

2
1 xn P 1

0
djn wn ln wnB (22)

where we have de� ned,

C1 5 C uo
kBT

a11
Õ 4jo(k)Dgx1

Õ
1
2

(23)

kc 5

Gx1x2CÄ A1 1
1

Ó qB2
sinCkc(1 1 q)

2 D
Õ 2C1x2

sin (qk
c
)

q
Õ 2C2x1 sin kcH

Gx
1
x
2
CÄ A1 1

1

Ó qB2A1 1 q
2 B cosCkc (1 1 q)

2 D
Õ 2C1x2 cos (qkc)

Õ 2C2x1 cos kcH

.

C2 5 C uo
k
B
T

a22
Õ 4jo(qk)Dgx2

Õ
1
2

(24)

CÄ 5 C
12 5 C

21

5 G uo
kBT

a12
Õ

1
kA1 1

1

Ó qB2
sinCk(1 1 q)

2 DH (25)
(32)

In view of the assumption of saturated nematic order,where jo (m) 5 sin (m)/m is the zeroth order Bessel
the N–SmA transition is second order in nature andfunction.
at the transition point x2 5 xN2 . Therefore x2 is found byThe distribution function wn for the nth species is
the condition qFN/qx2 5 0. This givesobtained by minimizing d f

S
:

x2 5
1

1 1 expCg(1 Õ 2x2 )b(q) 1
De

kBT D
(33)wn 5

1
Zn

w*n 5
1
Zn

exp[(anCn 1 xn ¾ an ¾ gCÄ ) cos pjn]

(26)

where n ¾ now represents the second species, and the 2.4. Expression for pressure
partition function Zn 5 Ÿ 1

0
djn w*n . We have p 5 Õ (qF/qV )

T
. As above, at the N–SmA

Substituting wn in equation (22), we get transition point, p 5 pN . Hence,

pv
kBT

5 Õ Cq(FNv/kBT )

qV D
T

.d fS 5 �
n
Axn a2n Cn

2
Õ xn ln ZnB 1 x1x2a1a2CÄ . (27)
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1254 A. S. Govind and N. V. Madhusudana

Using equation (13) we get

pv
kBT

5 g 1 g2C4 1
x2A
TRg*

1 x1x2b(q)D . (34)

2.5. Expression for Gibbs free energy
We have, at the transition point the Gibbs free energy,

G 5 GN 5 FN 1 pV . Therefore,

G
N

Nk
B
T

5 1 1 x
1CL(T ) 1 lnAN

1
v

V BD
1 x2CL(T ) 1 lnAN

2
v

V BD
1 gG x

2
A

TRg*
1 2[4 1 x1x2b(q)]H 1

x
2
De

kBT
. (35)

2.6. Method of calculation
A given compound is characterized by the para-

meters A, g*, q [see equations (1) and (2)] and a [see
equation (16)]. Fixing the packing fraction g and the Figure 2. The p ± T phase diagram for g* 5 0.55, q 5 1.2, show-
relative temperature T

R
, the values of k and x

2
are found ing the N–N transition lines for diŒerent values of A:

(a) A 5 3, (b) A 5 5 and (c) A 5 6.5. The transition is fromby self consistency of equations (32) and (33). With these
the N1 phase (above the line) to the Nd phase (below thevalues, D of equation (31) is calculated for g varying
line). The � rst order N1–Nd transition line ends in a

from zero to gmax (about 0.9 for hexagonal close packing critical point indicated by a closed circle.
of cylinders) . D > 0 corresponds to the smectic phase. The
values of g corresponding to the N–SmA transition are
located by the condition D 5 0. The transition pressures A can be expected to increase with the dipole moment
are calculated using equation (34). If x1 is large, the of the molecules. Indeed, while 7CB does not exhibit the
smectic has monolayer order (i.e. SmA1 ), otherwise it is N–N transition, the analogous molecule with an ester
SmAd . The su� x ‘R’ in NR , NR1 and NRd denotes a group dipole adding to that of the cyano group exhibits
reentrant nematic phase. Within the nematic phase, even the transition [31]. Experimentally the transition tem-
though we have assumed the order parameter S 5 1, perature has an approximately linear dependence on
there can be a � rst order nematic to nematic transition pressure [32] as seen in � gure 2. The value of A also
involving a jump in x1 . At this transition the Gibbs free increases with chain length in a homologous series as
energies corresponding to the two phases having (g, x1) explained in [13]. The above calculations have been
and (g ¾ , x ¾1 ) at a particular pressure become equal. We made with a � xed length ratio q. Actually, when the
denote the nematic with a larger (smaller) value of x1 as chain length is increased, both q and De increase. Near
the N

1
(N

d
) phase. q 5 1.5, if the chain length is increased by 50%, De

increases by an order of magnitude [13], whereas
q increases only by about 10%. Calculations show that3. Results and discussion

3.1. Nematic to nematic transition an increase of q results in a stronger � rst order N
1
–N

d
transition at a lower pressure for � xed values of otherWe � rst discuss the nematic to nematic transition. For

g* 5 0.55 and q 5 1.2 the N–N transition lines are shown parameters. At the Nd–N1 transition, the downward
jump in x2 is accompanied by a jump in g to higherin the p ± T plane in � gure 2, for diŒerent values of A.

The transition is from the N1 phase (above the line) to values, resulting in a better packing at the same p and
T values and this packing eŒect obviously depends onthe N

d
phase (below the line). It is seen that the N

1
–N

d
transition temperature increases with pressure and the q. Hence, in general, as the chain length is increased,

if the smectic phase does not intervene, the � rst order� rst order N1–Nd transition line ends in a critical point
( pc , Tc ). The critical point shifts to higher values of nature of the N1–Nd transition can be expected to

become stronger at any given pressure and to occur at( p, T ) on increasing A which is proportional to De, see
equation (1). Thus, the possibility of observing such a a lower temperature, due to higher values of both A

and q.transition increases for larger values of A. The value of
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1255Hybrid model for polar compounds

We have shown in an earlier paper [14], in which the
hard rod eŒects have not been taken into account, that
a negative deviation from the geometric mean (GM)
rule for the mutual interaction is necessary to get N1–Nd
transition and the � rst order nature of the N1–Nd
transition becomes stronger if the deviation is large. As
discussed above, in the present calculations the hard
rod eŒects alone are su� cient to give rise to the N1–Nd
transition even when the nematic order is saturated.
Further, an increase of the chain length (i.e. q and A)
has the same eŒect as an increase of the negative
deviation. Obviously, an increase of q makes the A
and P types of pairs structurally more dissimilar. From
equation (13 a), b (q ) 5 0 if q 5 1, i.e. the two species are
geometrically equivalent. Otherwise, b (q ) > 0 which
would, from equation (13), increase the free energy of
the medium. In theories which consider only the mean
� eld attractive part, such an increase requires a negative
deviation from GM rule. Thus, the inclusion of hard rod
features naturally gives rise to the observed N

1
–N

d
transition in the present problem. Indeed, experiments

Figure 3. The p ± T phase diagram obtained for A 5 1.5,show that the N–I transition temperatures of binary
g* 5 0.5, q 5 1.8 for diŒerent values of a2 : (a) a2 5 0.048,mixtures of nematogens have a negative deviation from
(b) a2 5 0.054, (c) a2 5 0.06 and (d) a2 5 0.066. The insetlinear dependence. This has been attributed to a negative
shows the reentrant part of the phase diagram in a

deviation from the GM rule in a theory considering only magni� ed scale along the pressure axis for a2 5 0.066. The
the attractive interactions [33], and later numerically axis of the parabolic SmAd boundary (the dotted line)

and the SmA1–NR line are roughly parallel.shown to be equivalent to including hard rod interactions
between the molecules [34]. Our present argument
shows the physical origin to lie in the increase in the
excluded volume ( 5 v[b (q ) 1 8]) between cylinders of

transition lines in the p ± T plane for a
2 5 0.066. ThediŒerent aspect ratios, even when both of them have the

6OCB–8OCB mixture does not exhibit the SmA
1

phasesame volume.
before it crystallizes. However, the theoretical diagram
resembles the experimental one [18] on a compound

3.2. Phase diagrams involving smectics exhibiting a double reentrant sequence. The axis of the
3.2.1. Double reentrance parabolic SmAd boundary and the SmA1–NR line are

The packing eŒect alone can stabilize the smectic roughly parallel as in the experimental curve [18].
phase [28, 22]. However, we could not get a reentrant However, the pressure values are underestimated in
sequence for any combinations of De and q, by com- our theory by a factor of about 4. The reason for this
pletely ignoring the attractive part of the smectic inter- discrepancy is that the hard core interactions are limited
actions. Thus, in the present model, attractive interactions to the second virial term and such an approximation is
between AA, PP and AP pairs are necessary to get known to underestimate the pressure even for the N–I
reentrance. Relatively small values of the McMillan transition [35].
parameter a are su� cient to stabilize the smectic phase
over wide ranges of pressure and temperature. The p ± T 3.2.2. Double reentrance with N

1
–N

d
transition

phase diagrams obtained for A 5 1.5, g* 5 0.5, q 5 1.8 As discussed in the introduction, the N1–Nd transition
and a2 varying from 0.048 to 0.066 are shown in � gure 3. can occur in the double reentrant part of the phase
The SmAd phase gets bounded in the p ± T plane and its diagram. Our model also predicts such a sequence even
stability increases as a

2
is increased. The theoretical in the absence of hard core interactions [36]. There is

curves are very similar to the experimental data on only one experimental observation of this kind [37]. By
mixtures of 6OCB and 8OCB studied by Cladis [18]. a careful and systematic search over the appropriate
Higher values of a2 correspond to larger concentrations domains of the model parameters, we have found a very
of 8OCB which has the longer chain length. The inset small range over which the reentrant N1–Nd transition

occurs. Figure 4 shows the p ± T phase diagram foralso shows both the SmA
1
–N

R
as well as the SmA

d
–N
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3.2.3. EVect of variation of De
Since from equation (1 ) De3 A, we have calculated

the phase diagram as a function of pressure and A. The
p ± A phase diagram showing a reentrant nematic lake
(which also has the NR1–NRd transition line changing
over to the SmA1–SmAd transition line) is obtained
for g* 5 0.5, q 5 1.8, TR 5 0.28, a2 5 0.0475 (� gure 5).
Experimentally Cladis and Brand [38] discovered long
ago the SmA

1
–SmA

d
transition line which ended in a

(chiral ) nematic lake in a binary mixture. The eŒect of
pressure on such a phase diagram appears not to have
been studied as yet, though the lake has been found in
other temperature–concentration phase diagrams [39].
It may be noted that the nematic lake predicted by the
frustrated spin gas model [6] is not associated with
the SmA1–SmAd transition line [39]. We see that, when
A (i.e. De and hence the chain length) is small, as the
pressure is increased, x2 remains large till the pressure
is quite high. At still higher pressures, though x2 decreases,
the high pressure is su� cient to stabilize the SmA

1
phase. Hence there is no N

R
. For intermediate values of

Figure 4. The p ± T phase diagram obtained for A 5 1.52, A, the value of De is large enough to cause a steeper
g* 5 0.5, q 5 1.8 and a2 5 0.042. The values of ( p, T ) which variation of x2 with respect to g (and hence p) around
are indicative of a SmA1–SmAd transition are shown by

g 5 g*. Since the A and P types of pairs are nowa dotted line. Note that NR1–NRd transition line ending
considerably dissimilar, when x2 decreases rapidly, thein a critical point, shown by a closed circle.
SmA

d
phase becomes unstable due to packing reasons

and the nematic phase reenters. For higher pressures,
A 5 1.52, g* 5 0.5, q 5 1.8 and a2 5 0.042. As mentioned
earlier, D > 0 in equation (31) corresponds to the SmA
phase. Since we have restricted the free energy expansion
to the quadratic powers in the order parameters, the
equations are valid only close to the N–SmA transition.
Hence, we cannot locate the SmA1–SmAd transition if
it occurs well within the SmA phase. However, for D > 0,
at some values of ( p, T ) the free energies of the SmA1
and SmAd phases become equal associated with a jump
in x

2
. This is indicative of a SmA

1
–SmA

d
transition near

those values of ( p, T ). Such values are shown with a
dotted line in � gure 4. The topology of the phase diagram
agrees with that predicted using the dislocation loop
melting theory of Prost and Toner [4]. In � gure 4,
the SmA1–NRd transition line separates the NR1–NRd
transition line ending in a critical point and the SmA

1
–

SmAd transition line. Experimental data having these
features in the p ± T plane are not available for com-
parison. (However, in the temperature–concentration
(T ± X) plane, a diagram with a similar topology has been
obtained in an experiment [37]. In an earlier paper we
have shown that a similar diagram in the temperature–a

Figure 5. The p ± A phase diagram showing a reentrantplane can be obtained in a calculation in which the hard
nematic (NR ) lake having the NR1–NRd transition line forrod eŒects are ignored [36].) As the chain length is
g* 5 0.5, q 5 1.8, TR 5 0.28, a2 5 0.0475. The values of

increased in a homologous series, De and hence A increase ( p, T ) which are indicative of a SmA1–SmAd transition
as mentioned earlier. The eŒect of this dependence is are shown by a dotted line. The closed circle indicates the

NR1–NRd critical point.discussed in the next section.
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1257Hybrid model for polar compounds

when x1 is large, the SmA1 phase becomes stable. For the SmA1–NR1 and the NRd–SmAd lines do not meet the
NR1–NRd line at the same point. They are separated bylarger values of A and hence De, x2 varies quite steeply.

Therefore, upto g 5 g*, x
2

is large and for g > g*, x
1

the SmA
1
–N

Rd
line. The topologies of the phase diagrams

(� gures 5 and 6) agree quite well with the diagramsbecomes large. In both cases, the SmA phase is stable
due to better packing of similar molecules. Around predicted by the dislocation loop melting theory of Prost

and Toner (see � gure 10.34 in [1]). As mentioned earlier,g# g*, there is a jump in x2 (and hence g) which is an
indication of SmAd–SmA1 transition (shown by dotted experimental p ± X diagrams are not available for com-

parison. However, in T ± X diagrams a similar topologyline).
Both De and a vary with chain length, and we have has been noted [37]. If a

2
is increased to 0.05, the

nematic lake shrinks and the NR1–NRd line is not seenshown in an earlier paper [13] that a can be assumed
to vary as (De)1/4. Using this variation, we have obtained as an extension of the SmA1–SmAd line.

Quadruple reentrance is a very rare phenomenon anda similar NR lake in the T ± a plane [13] considering
only attractive interactions. In the present calculations, is seen only in one compound [40]. The phenomenon

has been predicted by both the dislocation loop meltingwe get the N
R

lake due to hard rod eŒects alone without
including the variation of a with A (and hence De). In theory [4] and the spin gas theory [6]. The compound

used in reference [40] is DB
n
ONO2 which has theprinciple, as the chain length is varied, De, a and q vary

together. Calculations including all these dependences chemical formula C
n
H

2n+1
O–w–OOC–w–OOC–w–NO2

where w denotes a phenyl ring and n is the number ofare somewhat involved and have not been carried out.
Variation of A implies a variation of chain length, carbon atoms in the alkyl chain. This compound has a

terminal nitro dipole which is oppositely oriented to thewhich crudely re� ects the variation of concentration (X)
in a binary mixture of homologues. Hence, the calcu- two ester dipoles in the core. Hence, antiparallel con-

� gurations with diŒerent extents of overlappings arelation p ± A diagram can be compared with p ± X diagrams.
Experimentally, phase diagrams in only the p ± T and possible resulting in smectic polymorphism . This requires

a model considering antiparallel con� gurations withT ± X plane have been reported. As a2 is decreased
and other parameters kept � xed, the NR lake widens and diŒerent lengths and con� gurational energies which is

obviously very involved. However, in our simple model,opens up as shown in � gure 6 for a
2 5 0.047. Also as

the NR region becomes bounded for higher values of A, the possibility of quadruple reentrance at a constant
pressure is already seen in the upper part of � gure 6.
For clarity, this part is shown in a magni� ed scale along
the pressure axis (� gure 7). As A is decreased, the phase
sequence of SmA

d
–N

Rd
–SmA

1
–N

R1
–SmA

1
occurs along

the dotted line. It can be noted that the quadruple
reentrance occurs only over a very small range of values
of the model parameters.

4. Conclusions
We have extended our earlier model [13] developed

to explain double reentrance to include hard core
interactions, adopting the method used by Koda and
Kimura [22]. Assuming perfect orientational order, we
have calculated pressure–temperature phase diagrams
showing nematic to nematic (N1–Nd ) transition, double
reentrance with bounded SmA

d
region and N

1
–N

d
transition associated with double reentrance. We have
also calculated pressure versus A (a parameter which
increases with the chain length in a homologous series)
phase diagrams. These show the reentrance nematic (NR )
lake associated with the SmA1–SmAd transition, N1–Nd
transition occurring inside such an N

R
lake, quadruple

Figure 6. The p ± A phase diagram for g* 5 0.5, q 5 1.8, reentrance at constant pressure, and widening and
TR 5 0.28, a2 5 0.047, showing the opening of the reentrant merging of the NR lake with the main nematic sea. The
nematic lake of � gure 5 creating a ‘bay’. The values of

results are compared with other theories and the avail-( p, T ) which are indicative of a SmA1–SmAd transition
able experimental data. Our results con� rm that the hardare shown by a dotted line. The closed circle indicates the

NR1–NRd critical point. core interaction is the physical origin for the eŒective
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